Source code for bask.searchcv

import numpy as np
from skopt import BayesSearchCV as BayesSearchCVSK
from skopt.utils import dimensions_aslist, point_asdict

from bask.optimizer import Optimizer


[docs]class BayesSearchCV(BayesSearchCVSK): """Fully Bayesian optimization over hyper parameters. Wraps skopt.BayesSearchCV with a fully Bayesian estimation of the kernel hyperparameters, making it robust to very noisy target functions. BayesSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. Parameters are presented as a list of skopt.space.Dimension objects. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each search point. This object is assumed to implement the scikit-learn estimator api. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. search_spaces : dict, list of dict or list of tuple containing (dict, int). One of these cases: 1. dictionary, where keys are parameter names (strings) and values are skopt.space.Dimension instances (Real, Integer or Categorical) or any other valid value that defines skopt dimension (see skopt.Optimizer docs). Represents search space over parameters of the provided estimator. 2. list of dictionaries: a list of dictionaries, where every dictionary fits the description given in case 1 above. If a list of dictionary objects is given, then the search is performed sequentially for every parameter space with maximum number of evaluations set to self.n_iter. 3. list of (dict, int > 0): an extension of case 2 above, where first element of every tuple is a dictionary representing some search subspace, similarly as in case 2, and second element is a number of iterations that will be spent optimizing over this subspace. n_iter : int, default=50 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. Consider increasing ``n_points`` if you want to try more parameter settings in parallel. return_policy : string, default='best_setting' A string specifying which point should be considered the optimum at the end of the optimization. Should be one of - 'best_mean': return the point maximizing the mean function of the Gaussian process. This is usually the best choice when the target function is noisy and a single observation might not be representative. Note, if the number of iterations ``n_iter`` is low, the expected optimum can be still be uncertain. Only use this setting when you only have one search space. - 'best_setting': return the best setting tried so far. This is useful, if the target function is (almost) noise-free. optimizer_kwargs : dict, optional Dict of arguments passed to :class:`Optimizer`. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. At maximum there are ``n_points`` times ``cv`` jobs available during each iteration. n_points : int, default=1 This is not implemented yet. Consider using the original skopt.BayesSearchCV for now. Number of parameter settings to sample in parallel. If this does not align with ``n_iter``, the last iteration will sample less points. See also :func:`~Optimizer.ask` pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. return_train_score : boolean, default=False If ``'True'``, the ``cv_results_`` attribute will include training scores. Examples -------- >>> from bask import BayesSearchCV >>> # parameter ranges are specified by one of below >>> from skopt.space import Real, Categorical, Integer >>> >>> from sklearn.datasets import load_iris >>> from sklearn.svm import SVC >>> from sklearn.model_selection import train_test_split >>> >>> X, y = load_iris(True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... train_size=0.75, ... random_state=0) >>> >>> # log-uniform: understand as search over p = exp(x) by varying x >>> opt = BayesSearchCV( ... SVC(), ... { ... 'C': Real(1e-6, 1e+6, prior='log-uniform'), ... 'gamma': Real(1e-6, 1e+1, prior='log-uniform'), ... 'degree': Integer(1,8), ... 'kernel': Categorical(['linear', 'poly', 'rbf']), ... }, ... n_iter=32, ... random_state=0 ... ) >>> >>> # executes bayesian optimization >>> _ = opt.fit(X_train, y_train) >>> >>> # model can be saved, used for predictions or scoring >>> print(opt.score(X_test, y_test)) 0.973... Attributes ---------- cv_results_ : dict of numpy (masked) ndarrays A dict with keys as column headers and values as columns, that can be imported into a pandas ``DataFrame``. For instance the below given table +--------------+-------------+-------------------+---+---------------+ | param_kernel | param_gamma | split0_test_score |...|rank_test_score| +==============+=============+===================+===+===============+ | 'rbf' | 0.1 | 0.8 |...| 2 | +--------------+-------------+-------------------+---+---------------+ | 'rbf' | 0.2 | 0.9 |...| 1 | +--------------+-------------+-------------------+---+---------------+ | 'rbf' | 0.3 | 0.7 |...| 1 | +--------------+-------------+-------------------+---+---------------+ will be represented by a ``cv_results_`` dict of:: { 'param_kernel' : masked_array(data = ['rbf', 'rbf', 'rbf'], mask = False), 'param_gamma' : masked_array(data = [0.1 0.2 0.3], mask = False), 'split0_test_score' : [0.8, 0.9, 0.7], 'split1_test_score' : [0.82, 0.5, 0.7], 'mean_test_score' : [0.81, 0.7, 0.7], 'std_test_score' : [0.02, 0.2, 0.], 'rank_test_score' : [3, 1, 1], 'split0_train_score' : [0.8, 0.9, 0.7], 'split1_train_score' : [0.82, 0.5, 0.7], 'mean_train_score' : [0.81, 0.7, 0.7], 'std_train_score' : [0.03, 0.03, 0.04], 'mean_fit_time' : [0.73, 0.63, 0.43, 0.49], 'std_fit_time' : [0.01, 0.02, 0.01, 0.01], 'mean_score_time' : [0.007, 0.06, 0.04, 0.04], 'std_score_time' : [0.001, 0.002, 0.003, 0.005], 'params' : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...], } NOTE that the key ``'params'`` is used to store a list of parameter settings dict for all the parameter candidates. The ``mean_fit_time``, ``std_fit_time``, ``mean_score_time`` and ``std_score_time`` are all in seconds. best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. optimizer_results_ : list of `OptimizeResult` Contains a `OptimizeResult` for each search space. The search space parameter are sorted by its name. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. best_index_ : int The index (of the ``cv_results_`` arrays) which corresponds to the best candidate parameter setting. The dict at ``search.cv_results_['params'][search.best_index_]`` gives the parameter setting for the best model, that gives the highest mean score (``search.best_score_``). scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. n_splits_ : int The number of cross-validation splits (folds/iterations). Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`skopt.BayesSearchCV`: This class wraps the original BayesSearchCV in skopt. :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. """
[docs] def __init__( self, estimator, search_spaces, optimizer_kwargs=None, n_iter=50, return_policy="best_setting", scoring=None, fit_params=None, n_jobs=1, n_points=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch="2*n_jobs", random_state=None, error_score="raise", return_train_score=False, ): super().__init__( estimator, search_spaces, optimizer_kwargs, n_iter, scoring, fit_params, n_jobs, n_points, iid, refit, cv, verbose, pre_dispatch, random_state, error_score, return_train_score, ) self.return_policy = return_policy if self.optimizer_kwargs is None: self.optimizer_kwargs = {} self.n_samples = self.optimizer_kwargs.get("n_samples", 0) self.gp_samples = self.optimizer_kwargs.get("gp_samples", 100) self.gp_burnin = self.optimizer_kwargs.get("gp_burnin", 5) if "acq_func" not in self.optimizer_kwargs: self.optimizer_kwargs["acq_func"] = "pvrs"
def _make_optimizer(self, params_space): """Instantiate bask Optimizer class. Parameters ---------- params_space : dict Represents parameter search space. The keys are parameter names (strings) and values are skopt.space.Dimension instances, one of Real, Integer or Categorical. Returns ------- optimizer: Instance of the `Optimizer` class used for for search in some parameter space. """ kwargs = self.optimizer_kwargs_.copy() kwargs["dimensions"] = dimensions_aslist(params_space) # Here we replace skopt's Optimizer: optimizer = Optimizer(**kwargs) for i in range(len(optimizer.space.dimensions)): if optimizer.space.dimensions[i].name is not None: continue optimizer.space.dimensions[i].name = list(sorted(params_space.keys()))[i] return optimizer def _step(self, search_space, optimizer, evaluate_candidates, n_points=1): """Generate n_jobs parameters and evaluate them in parallel.""" # get parameter values to evaluate params = [optimizer.ask(n_points=n_points)] # convert parameters to python native types params = [[np.array(v).item() for v in p] for p in params] # make lists into dictionaries params_dict = [point_asdict(search_space, p) for p in params] all_results = evaluate_candidates(params_dict) # Feed the point and objective value back into optimizer # Optimizer minimizes objective, hence provide negative score local_results = all_results["mean_test_score"][-len(params) :] # optimizer minimizes objective, hence provide negative score return optimizer.tell( params, [-score for score in local_results], n_samples=self.n_samples, gp_samples=self.gp_samples, gp_burnin=self.gp_burnin, progress=False, )